

Pathway Engineering’s Configuration Generator

Eliminating mistakes by making a developer responsible to fix them for you!

Introduction

When you’ve had to complete as many equipment upgrades as we have, the process
of having to generate cutsheets and new configuration files is tedious and,
well, kinda boring. “So let’s automate it instead,” someone said. Lo and
behold, we delivered LIKE A BOSS.

The Config Generator is designed to take in existing configuration files,
jack-to-port documentation, current device model and target model in order to
speed up the process of pre-configuring equipment for Next-Gen project
deployment. Hopefully we will get around to creating a Cisco-to-Dell and
vice-versa extension, but we’ll that to Kent - because he slaves away his free
time to work for some strange reason.

Contents:

Table of Contents

	1. Getting started with the awesome configuration generator
	1.1. Installation and Preparation
	1.1.1. Dependencies

	1.1.2. Developer Dependencies

	1.2. Directory Structure

	1.3. Invoking the module from CLI

	2. Order of operation
	2.1. migrate_ports() before vlan_extract()

	2.2. trunk_cleanup() before remove_mdix_and_dot1q()

	2.3. Call add_snooping() last
	2.3.1. Example

	3. Just need port configuration? I gotchu

	4. SwitchConfigGenerator API

Indices and tables

	Index

	Module Index

	Search Page

1. Getting started with the awesome configuration generator

1.1. Installation and Preparation

Before you begin, a few packages are necessary to download and install. You can do this via pip for easy installation. You can simply type pip install -r requirements.txt (or pip install -r dev-requirements.txt if you plan on contributing).

1.1.1. Dependencies

natsort==5.0.1
ciscoconfparse==1.2.40
colorama==0.3.7
ipaddr==2.1.11
dnspython==1.14.0
openpyxl==2.3.5
et-xmlfile==1.0.1
jdcal==1.2

1.1.2. Developer Dependencies

alabaster==0.7.8
Babel==2.3.4
ciscoconfparse==1.2.40
colorama==0.3.7
dnspython==1.14.0
docutils==0.12
et-xmlfile==1.0.1
imagesize==0.7.1
ipaddr==2.1.11
jdcal==1.2
Jinja2==2.8
MarkupSafe==0.23
natsort==5.0.1
openpyxl==2.3.5
Pygments==2.1.3
pytz==2016.4
six==1.10.0
snowballstemmer==1.2.1
Sphinx==1.4.4
sphinx-rtd-theme==0.1.9

1.2. Directory Structure

In order to run the script, several folders need to
be created:

configconverter
|_ configs
|_ cutsheets
_ output
 _ templates

1.3. Invoking the module from CLI

The module includes an if __name__ == '__main__': statement so it can be
called from the directory itself. You may copy it directly, but we’ve included
it here (with the import) for convenience:

from configconverter import SwitchConfigGenerator

if __name__ == "__main__":
 oldconfig, newconfig = get_configs()
 switch_type = get_switch_model()
 hostname = force_user_input("Enter hostname of new switch: ").upper()
 outputfile = input(
 "Enter output file name (default - " + hostname + ".txt): ")
 outputfile = outputfile if outputfile else hostname + ".txt"
 createconfig = ("n" not in input(
 "Generate full config file?[Y|n]: ").lower())

 blades, nojacks, newjacks = migrate_ports(
 oldconfig, newconfig, hostname, switch_type)
 # Add ip dhcp snooping later! Adding it immediately after interfaces
 # causes a bug if trying to use file as startup-config
 vlans = vlan_extract(oldconfig, newconfig, feed_ports_regex[
 switch_models[switch_type]], createconfig)
 setup_feeds(newconfig, switch_type, blades, vlans)
 interfaces_for_review(newconfig, nojacks, newjacks)
 set_voice_vlan(oldconfig)
 access_cleanup(newconfig)
 trunk_cleanup(newconfig)

 # This must be run AFTER trunk_cleanup()
 if not switch_models[switch_type] == "3560":
 remove_mdix_and_dot1q(newconfig)
 if createconfig:
 baseconfig = ".txt"
 if (switch_type == len(switch_models) - 1):
 baseconfig = "baseconfig.txt"
 else:
 baseconfig = switch_models[switch_type] + "base.txt"
 newconfig.prepend_line("!")
 newconfig.prepend_line("hostname " + hostname)
 newconfig.prepend_line("!")
 newconfig.commit()
 extract_management(oldconfig, newconfig)
 add_snooping(newconfig, vlans)
 newconfig.append_line("!")
 with open(template_dir + baseconfig, "r") as b:
 for line in b:
 newconfig.append_line(line.rstrip())
 newconfig.commit()

 file_export(outputfile, newconfig)

Note

You are still responsible for including the module directory in the
search path

2. Order of operation

Since the config generator is far from perfect – unlike myself – there are a
few functions that can wreck havoc on your configuration output if you’re not
careful. (Using the example layout from the script itself works fine.) When
you import the module for use in other scripts, be sure to:

2.1. migrate_ports() before vlan_extract()

vlan_extract() will also prune any VLANs that are not assigned to
edge ports so as to clean out the VLAN database.

2.2. trunk_cleanup() before remove_mdix_and_dot1q()

If ports are configured with switchport mode trunk but still contain
commands for access ports, all encapsulation configuration will be removed

2.3. Call add_snooping() last

Adding ip dhcp snooping too early will cause the switch to believe that
it should be applied to an interface. Since it is not a valid interface
command, it discards it from the startup-config. It should be invoked last
with a least one function called in-between it and migrate_ports(),
that way a buffer is put between the configuration generated by them.

Note

It should also be called after migrate_ports() so that
pruned VLANs are not added to the list

2.3.1. Example

Calling too early:

interface vlan 300
 ip address 10.23.21.4 255.255.255.128
 no ip route-cache
! The switch will mistakenly apply the next line to VLAN 300 and discard
ip dhcp snooping vlan 24,109,209,309,318,483,509,609,620,651,709,902,985,1902
no ip dhcp snooping information option
ip dhcp snooping

3. Just need port configuration? I gotchu

If the managed device is setup correctly but ports have had a shift in
configuration, you can generate just the list of ports so as to not risk
accidentally overriding any management settings. You will still have the
option to configure feeding ports too, if desired. The following snippet
would be sufficient:

from configconverter import SwitchConfigGenerator

if __name__ == "__main__":
 oldconfig, newconfig = get_configs()
 switch_type = get_switch_model()
 hostname = force_user_input("Enter hostname of new switch: ").upper()
 outputfile = input(
 "Enter output file name (default - " + hostname + ".txt): ")
 outputfile = outputfile if outputfile else hostname + ".txt"
 createconfig = ("n" not in input(
 "Generate full config file?[Y|n]: ").lower())

 blades, nojacks, newjacks = migrate_ports(
 oldconfig, newconfig, hostname, switch_type)
 # Add ip dhcp snooping later: adding it immediately after interfaces
 # causes a bug if trying to use file as startup-config
 vlans = vlan_extract(oldconfig, newconfig, feed_ports_regex[
 switch_models[switch_type]], createconfig)
 setup_feeds(newconfig, switch_type, blades, vlans)
 interfaces_for_review(newconfig, nojacks, newjacks)
 set_voice_vlan(oldconfig)
 access_cleanup(newconfig)
 trunk_cleanup(newconfig)
 file_export(outputfile, newconfig)

4. SwitchConfigGenerator API

	
SwitchConfigGenerator.access_cleanup(newconfig)

	Remove trunk configuration for all ports set to access mode

	Parameters

	
	oldconfig – CiscoConfParse object of existing configuration file

	newconfig – CiscoConfParse object, representing the “new” config file

	
SwitchConfigGenerator.add_snooping(newconfig, vlans)

	Add DHCP snooping commands to new configuration file

	Parameters

	
	newconfig – CiscoConfParse object, representing the “new” config file

	vlans – List of VLANs to add

	
SwitchConfigGenerator.add_voice_vlan(voicevlan, newconfig)

	Add voice VLAN to access ports that do not have it

Todo

Remove print statements when interfaces_for_review is
completed

	Parameters

	
	voicevlan – a VLAN represented as a string or int

	newconfig – CiscoConfParse object representing the “new”
configuration file

	
SwitchConfigGenerator.condensify_ports(ports)

	Turn a collection of ports into a Cisco-formatted range

Todo

Altering format depending on “new” switch model

	Parameters

	ports – List of port names

	Returns

	Ports in a Cisco-formatted range

	Return type

	String

	
SwitchConfigGenerator.extract_management(oldconfig, newconfig)

	Extract the management VLAN and add it to new config file

Assuming the target equipment is a layer 2 switch with only one management
VLAN, the VLAN config is extracted and the option to retain IP information
is provided.
ip tacacs source-interface <VLAN> is added but only necessary for a 4506;
this command will be ignored on all other models.

	Parameters

	
	oldconfig – CiscoConfParse object of existing configuration file

	newconfig – CiscoConfParse object, representing the “new” config file

	
SwitchConfigGenerator.file_export(outputfile, newconfig)

	Save current configuration to a file

Exports to the directory defined by internal/global var ‘output_dir’

	Parameters

	
	outputfile – Desired file name

	newconfig – CiscoConfParse object, representing the “new” config file

	
SwitchConfigGenerator.force_user_input(display, expect='')

	Enforce that the user input at least one character

	Parameters

	
	display – String to display as the input prompt

	expect – Regex string representing the required format of the
response before returning to caller. Defaults to an empty
string (match any)

	Returns

	User’s input

	Return type

	String

	
SwitchConfigGenerator.get_configs()

	Set the configuration file to pull data from
Prompts user for file name

	Returns

	oldconfig – Existing/source configuration file
newconfig – Container for the new device’s configuration

	Return type

	CiscoConfParse, CiscoConfParse

	
SwitchConfigGenerator.get_switch_model()

	Prompt user to select model from compatible list

	Returns

	The user’s input as the internal switch_models index

	Return type

	Int

	
SwitchConfigGenerator.get_vlan_list(oldconfig, regex)

	Retrieve all VLANs from the old configuration file and return a list.

(This is intended for future use in cross-platform conversions.)

	Parameters

	
	oldconfig – CiscoConfParse object of existing configuration file

	regex – Regex string used to determine if port is a feed

	Returns

	All VLANs defined, sorted in ascending order

	Return type

	List

	
SwitchConfigGenerator.interfaces_for_review(newconfig, nojacks, newjacks)

	Searches for interfaces on the “new” device with non-standard configs to
be reviewed manually.

Searches for statically set PoE, duplex, operating speed, no defined
switchport mode

	Parameters

	newconfig – CiscoConfParse object representing the “new”
configuration file

	
SwitchConfigGenerator.is_ip(addr)

	

	
SwitchConfigGenerator.migrate_ports(oldconfig, newconfig, hostname, switch_type)

	Map and transfer configuration settings of old ports

Searches for Excel workbooks in the ./cutsheer_dir/ directory.
The “cutsheet” files are generated by TurboClerk which are pulled from
Netdoc.

As of May 2016, Carlos Bassett has set a standard for worksheet layouts and
file names, as follows:

	The spreadsheets must have each tab nammed from the source switch and the
first column MUST be the port name.

	Any jack associated to this port must be in the row, otherwise
configuration will not be transferred.

	The file with the current port-jack mappings must have the building code
in the name, along with “as is”.

	The file with the future port-jack mappings must have the building code
in the name, along with “to be”.

	The file with the future port-jack mappings MUST begin listing ports in
the third row.

Note that this function has the potential to break if corresponding jacks
are found from a different existing switch.
A future workaround of loading the switch it is found from has been added
as a TODO

Todo

Remove print statements when interfaces_for_review is
completed

All returned variables are intended for printing out
warnings/notices/debugging

	Parameters

	
	oldconfig – CiscoConfParse object of existing configuration file

	newconfig – CiscoConfParse object, representing the “new” config file

	hostname – Name of the new switch

	switch_type – the index of switch_models that represents the “new”
switch model

	Returns

	blades – Detected blade numbers in the stack
nojacks – Port names on the new switch that do not have a jack
associated with them
newjacks – Port names on the new switch that have jacks
associated to them, however they do not exist in any As-Is
spreadsheets

	Return type

	(Set, List, List)

	
SwitchConfigGenerator.no_files_found(directory)

	Allows the user to move files to correct directory or exit early

	Parameters

	directory – The folder in which the files should be located

	
SwitchConfigGenerator.remove_mdix_and_dot1q(newconfig)

	Remove MDIX and dot1q from all interfaces

Note

Should be run after trunk_cleanup()

Keyword arguments:
newconfig – CiscoConfParse object, representing the “new” config file

	
SwitchConfigGenerator.set_voice_vlan(oldconfig)

	Select and add a voice VLAN to add to access ports

	Parameters

	oldconfig – CiscoConfParse object of existing configuration file

	
SwitchConfigGenerator.setup_feeds(newconfig, switch_type, blades, vlans)

	Configure feedports

Allows the user to define as many feedports as desired.
Checks the validity of the port name as defined by a regex string.

	Parameters

	
	newconfig – CiscoConfParse object, representing the “new” config file

	switch_type – The representation of the switch model in the form of
the switch_models index

	blades – A Set of all blade numbers in the stack

	vlans – – A List of all VLANs transferred to the new configuration
file

	
SwitchConfigGenerator.trunk_cleanup(newconfig)

	Remove access mode configuration on trunk ports

Removes access/voice vlan configs, spanning-tree portfast, and
no snmp trap link-status

Todo

Detect and remove VLANs from VLAN ranges

	Parameters

	newconfig – CiscoConfParse object representing the “new”
configuration file

	
SwitchConfigGenerator.vlan_extract(oldconfig, newconfig, regex, genconfig=False)

	Retrieve all VLANs from the old configuration file

Automatically detects if certain VLANs will not be used and will offer to
prune them.

Note

For pruning to work, this _must_ be called before
setup_feeds()

	Parameters

	
	oldconfig – CiscoConfParse object of existing configuration file

	newconfig – CiscoConfParse object, representing the “new” config file
defaults to None

	regex – Regex string used to determine if port is a feed

	genconfig – A boolean representing if a full config will be
generated:
If True, all VLANs will be added to the new config file.
Defaults to False

	Returns

	All VLANs defined, sorted in ascending order

	Return type

	List

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 SwitchConfigGenerator	

Index

 A
 | C
 | E
 | F
 | G
 | I
 | M
 | N
 | R
 | S
 | T
 | V

A

 	
 	access_cleanup() (in module SwitchConfigGenerator)

 	
 	add_snooping() (in module SwitchConfigGenerator)

 	add_voice_vlan() (in module SwitchConfigGenerator)

C

 	
 	condensify_ports() (in module SwitchConfigGenerator)

E

 	
 	extract_management() (in module SwitchConfigGenerator)

F

 	
 	file_export() (in module SwitchConfigGenerator)

 	
 	force_user_input() (in module SwitchConfigGenerator)

G

 	
 	get_configs() (in module SwitchConfigGenerator)

 	
 	get_switch_model() (in module SwitchConfigGenerator)

 	get_vlan_list() (in module SwitchConfigGenerator)

I

 	
 	interfaces_for_review() (in module SwitchConfigGenerator)

 	
 	is_ip() (in module SwitchConfigGenerator)

M

 	
 	migrate_ports() (in module SwitchConfigGenerator)

N

 	
 	no_files_found() (in module SwitchConfigGenerator)

R

 	
 	remove_mdix_and_dot1q() (in module SwitchConfigGenerator)

S

 	
 	set_voice_vlan() (in module SwitchConfigGenerator)

 	
 	setup_feeds() (in module SwitchConfigGenerator)

 	SwitchConfigGenerator (module)

T

 	
 	trunk_cleanup() (in module SwitchConfigGenerator)

V

 	
 	vlan_extract() (in module SwitchConfigGenerator)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Pathway Engineering’s Configuration Generator

 		
 Getting started with the awesome configuration generator

 		
 Installation and Preparation

 		
 Dependencies

 		
 Developer Dependencies

 		
 Directory Structure

 		
 Invoking the module from CLI

 		
 Order of operation

 		
 migrate_ports() before vlan_extract()

 		
 trunk_cleanup() before remove_mdix_and_dot1q()

 		
 Call add_snooping() last

 		
 Example

 		
 Just need port configuration? I gotchu

 		
 SwitchConfigGenerator API

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

